# **Control Systems**



### **Topics** Covered

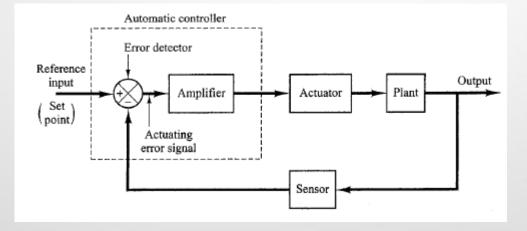
- Basic Control Action
- P, PI, PID controller

A controller compares the actual value of

output with the reference input, determines the deviation, and produces a control signal that will reduce the deviation to zero or to a small value.

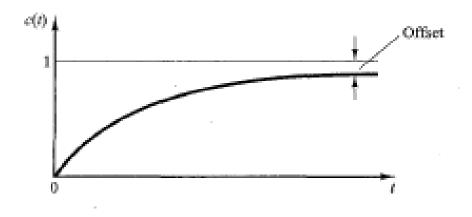
 The manner in which the controller produces the control signal is called the *control action*.

# block diagram of an industrial control system

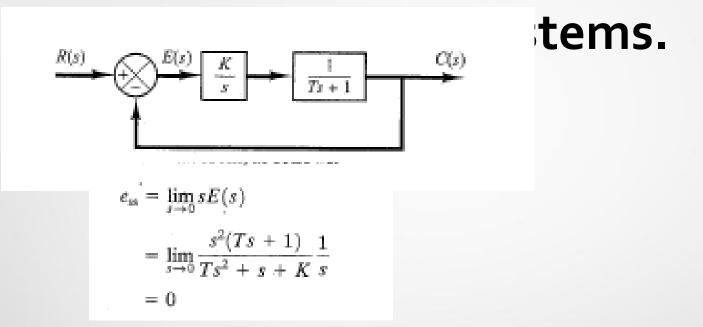


# Classifications of Industrial Controllers.

- 1. Two-position or on-off controllers
- **2. Proportional controllers**
- 3. Integral controllers
- **4**. Proportional-plus-integral controllers
- 5. Proportional-plus-derivative controllers
- 6. Proportional-plus-integral-plus-derivative controllers



#### or in the step an offset.

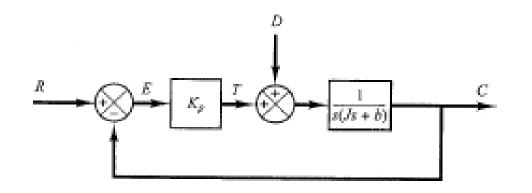


Integral control of the system eliminates the steady-state error in the response to the step input..

# Response to Torque Disturbances (Proportional Control)

Assuming that the reference input is zero or R(s) = 0, the transfer function by C(s) and D(s) is given by

$$\frac{C(s)}{D(s)} = \frac{1}{Js^2 + bs + K_p}$$

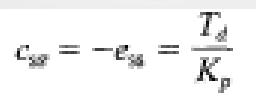


#### Hence

$$\frac{E(s)}{D(s)} = -\frac{C(s)}{D(s)} = -\frac{1}{Js^2 + bs + K_p}$$

The steady-state error due to a step disturbance torque of magnitude  $T_d$  is given by

$$e_{ss} = \lim_{s \to 0} sE(s)$$
  
= 
$$\lim_{s \to 0} \frac{-s}{Js^2 + bs + K_p} \frac{T_d}{s}$$
  
= 
$$-\frac{T_d}{K_p}$$



# Response to Torque Disturbances (Proportional-Plus-Integral Control

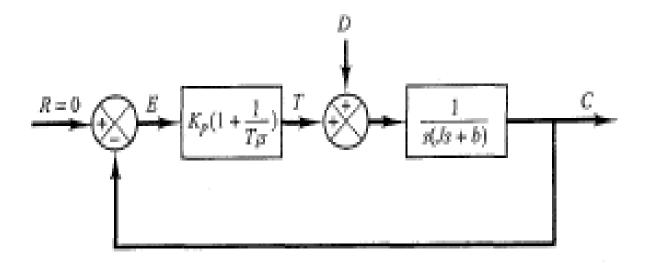
- To eliminate offset due to torque disturbance, the proportional controller may be replaced by a proportional-plus-integral controller.
- If integral control action is added to the controller, then, as long as there is an error signal, a torque is developed by the controller to reduce this error, provided the control system is a stable one.

The closed-loop transfer function between C(s) and D(s) is

$$\frac{C(s)}{D(s)} = \frac{s}{Js^3 + bs^2 + K_p s + \frac{K_p}{T_i}}$$

In the absence of the reference input, or r(t) = 0, the error signal is obtained from

$$E(s) \approx -\frac{s}{Js^3 + bs^2 + K_ps + \frac{K_p}{T_i}}D(s)$$



If this control system is stable, that is, if the roots of the characteristic equation

$$Js^{3} + bs^{2} + K_{p}s + \frac{K_{p}}{T_{i}} = 0$$

have negative real parts, then the steady-state error in the response to a unit-step disturbance torque can be obtained by applying the final-value theorem as follows:

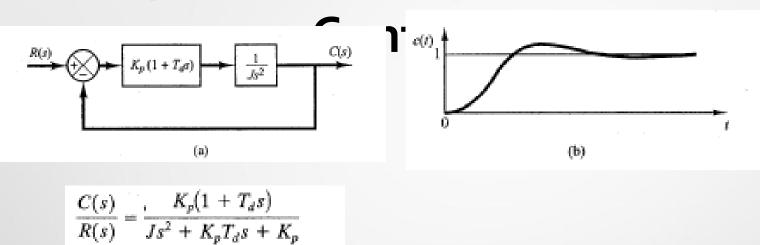
$$e_{ss} = \lim_{s \to 0} sE(s)$$
$$= \lim_{s \to 0} \frac{-s^2}{Js^3 + bs^2 + K_ps + \frac{K_p}{T_i}} \frac{1}{s}$$
$$= 0$$

It is important to point out that if the controller was an integral controller, then the system always becomes unstable because the characteristic equation

 $Js^3 + bs^2 + K = 0$ 

will have roots with positive real parts. Such an unstable system cannot be used in practice.

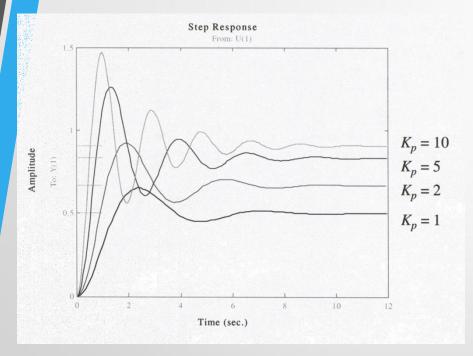
#### **Proportional-Plus-Derivative**



. Thus derivative control introduces a damping effect. A typical response curve *c* (*t*) to *a unit step* input is shown in

 Effect of Proportional, Integral & Derivative Gains on the Dynamic Response

# Change in gain in P controller



- Increase in gain:
  - $\rightarrow$  Upgrade both steady-

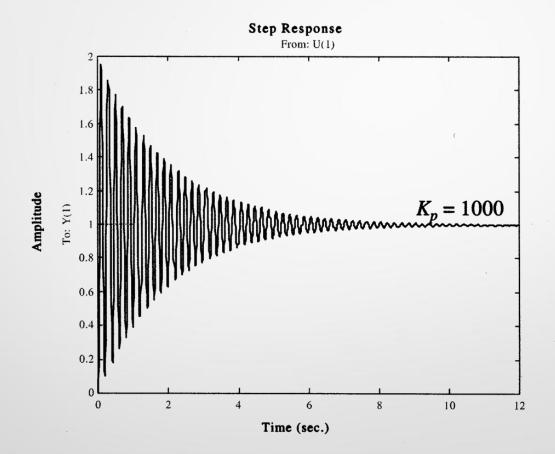
state and transient

responses

→ Reduce steady-state error

 $\rightarrow$  Reduce stability!

# P Controller with high gain



### Integral Controller

Integral of error with a constant gain

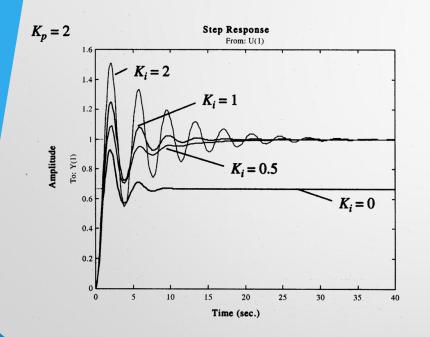
ightarrow increase the system type by 1

 $\rightarrow$ eliminate steady-state error for

a unit step input

 $\rightarrow$  amplify overshoot and oscillations

# Change in gain for PI controller



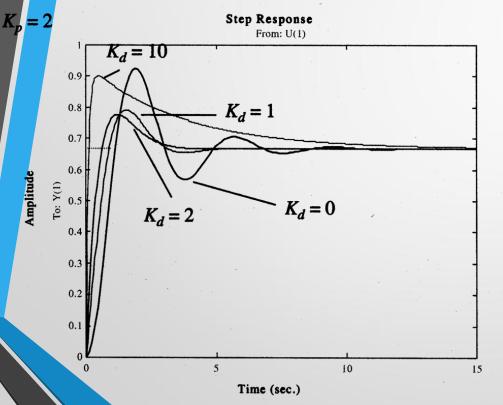
- Increase in gain:
  - $\rightarrow$  Do not upgrade steady
    - state responses
  - → Increase slightly settling time
  - → Increase oscillations and overshoot!

#### **Derivative Controller**

Differentiation of error with a constant gain

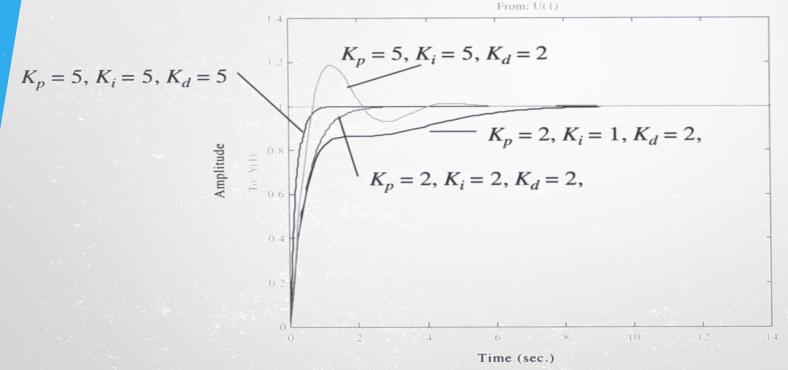
 detect rapid change in output
 reduce overshoot and oscillation
 do not affect the steady-state response

#### Effect of change for gain PD controller



- Increase in gain:
  - → Upgrade transient response
  - → Decrease the peak and rise time
  - → Increase overshoot and settling time!





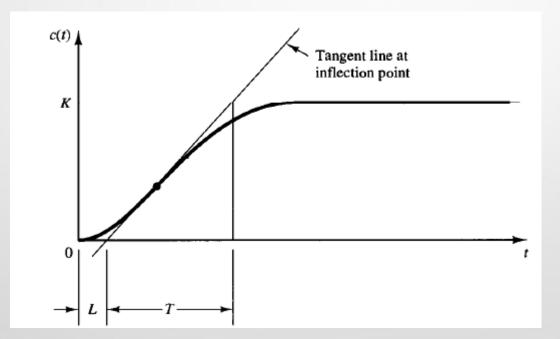
#### Ziegler-Nichols rules for tuning PID controllers.

- These rules are used to determine Kp, Ti and Td for PID controllers
- First Method: The response is obtained experimentally to a u no

c(t)

Plant

u(t)



Ziegler and Nichols suggested to set the values of  $K_p$ ,  $T_i$ , and  $T_d$ 

1, 100 8

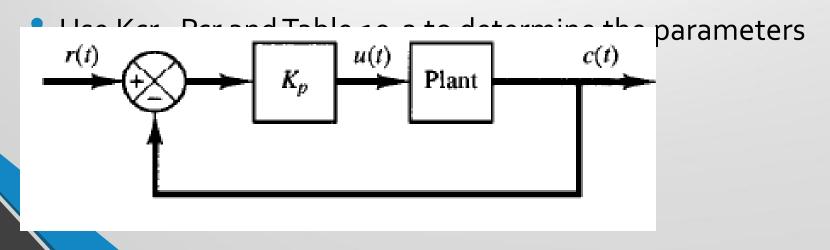
according to Table 10-1.

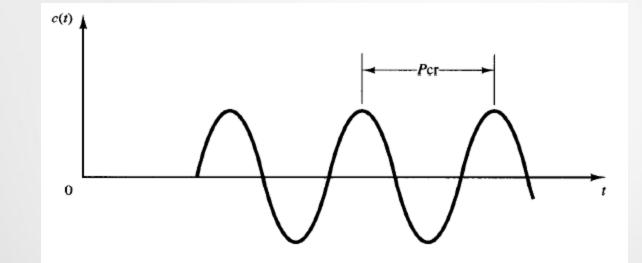
Table 10-1 Ziegler-Nichols Tuning Rule Based on Step Response of Plant (First Method)

| Type of<br>Controller | $K_p$             | <i>T</i> <sub>i</sub> | T <sub>d</sub> |
|-----------------------|-------------------|-----------------------|----------------|
| Р                     | $\frac{T}{L}$     | œ                     | 0              |
| PI                    | $0.9 \frac{T}{L}$ | $\frac{L}{0.3}$       | 0              |
| PID                   | $1.2\frac{T}{L}$  | 2 <i>L</i>            | 0.5 <i>L</i>   |

### Second Method

 Set Ti= inf and Td=o, increase Kp from o t a critical value Kcr where the output exhibits sustained oscillations.





# **Table 10–2** Ziegler–Nichols Tuning Rule Based on Critical Gain $K_{cr}$ and Critical Period $P_{cr}$ (Second Method)

| Type of<br>Controller | $K_p$                      | Ti                         | T <sub>d</sub>               |
|-----------------------|----------------------------|----------------------------|------------------------------|
| Р                     | $0.5K_{\rm cr}$            | œ                          | 0                            |
| PI                    | 0.45K <sub>cr</sub>        | $\frac{1}{1.2}P_{cr}$      | 0                            |
| PID                   | 0.6 <i>K</i> <sub>cr</sub> | 0.5 <i>P</i> <sub>cr</sub> | 0.125 <i>P</i> <sub>cr</sub> |